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Abstract

The FALCON optical design and evaluation computer

program was examined and applied to two efforts. The

first effort involved the evaluation of a Cooke triplet

and manual verification of some of the code's results.

The second effort was the design of a beam expander, the

function of which is to expand and square a high aspect

ratio rectangular laser beam. The system uses a single

spherical mirror and two cylindrical mirrors to produce

the desired output. A brief discussion of the diffraction

theory of aberrations and aberration balancing gives

some of the basis upon which the FALCON code is constructed.

vii



I. INTRODUCTION

Background

Prior to 1930 all lenses were designed using logarithms,

and from 1930 to about 1960 they were designed by hand using

mechanical desk calculators and sine tables (Ref 1:58).

This was a long and tedious process because the design of

optical systems is, in general, an iterative process re-

quiring a "first guess" followed by successive refinements

to eventually arrive at an acceptable design. The iterative

approach is still used, however, enhanced through the use

of the modern digital computer.

The iterative approach is applied to two different

design/evaluation problems. The first problem demonstrates

the FAL.CON optical design program by evaluating the design of

a Cooke triplet. This is intended to be used as a

pedagogical exercise to familiarize the reader with the use

of several of the commands, outputs, and features of the

Falcon program. Some computer generated results are manually

verified to add credibility and understanding to the internal

workings of the FALCON program.

The second design problem involves a three-mirror beam

expander system employing one spherical and two cylindrical

elements to square a rectangular input. This design was

proposed for study by the Air Force Weapons Laboratory

(AFWL). The beam expander is part of a tentative design for



a continuous wave carbon dioxide ring laser. The beam

expander will accept the output of the carbon dioxide gain

cell in the form of a 1.5 cm by 15 cm, rectangular beam. The

rectangular beam will be squared by the beam expander to 12

cm by 12 cm. The square beam will then be directed through a

scraper to remove a 1.5 cm. by 12 cm portion and, to complete

the ring, this rectangular beam will be directed into the

gain cell.

Problem

The problem is divided into two segments. The first

problem segment involves becoming familiar with the features,

capabilities, limitations, and operation of the FALCON

optical design program. To this end, a relatively simple

optical system is evaluated using FALCON and the results

are compared with available published values. A Cooke

triplet is used as the subject system due to its relative

simplicity and the availability of published data.

The second problem segment involves evaluating an

off-axis reflective beam expander design proposed by AFWL,

The purpose of which is to square a high aspect ratio

rectangular laser beam input into the system. The system, as

proposed, employs two cylindrical elements and a single

spherical element. The problem requires the development

of a design and its subsecuent evaluation.

Assumptions

For the first problemn qment, it was assumed that the
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published values for the triplet being evaluated are

correct. For the second problem segment, it was assumed that

the FALCON program was operating correctly. Furthermore, from

pragmatic considerations, the linear dimension of the beam

expander will not exceed six meters in length. Since the

beam expander is to be used with a laser beam with a

wavelength of 10.6 microns, the effects of chromatic

aberrations are not considered. In addition, the FALCON code

uses Zernike polynomials to calculate wavefront aberrations.

Zernike polynomials are defined on the unit circle. For

exit pupil geometries other than circular, presumably the

FALCON code uses an inscribed circle on which the Zernike

polynomials are defined thus rendering the use of Zernike

polynomials a valid approach for calculating wavefront

aberrations.

Approach

For the first problem segment, a triplet system was

chosen for evaluation whose system specifications were

readily available. The specifications were converted into a

form suitable for entry into the FALCON program. The triplet

system performance was evaluated using FALCON, and in the

process, several of the features of the program were

demonstrated. Some of the results generated by the FALCON

program wore then manually verified to add credibility and

understanding to the internal workings of the code.
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For the second problem segment, the FALCON code was used

to evaluate a proposed beam expander design. Insofar as the

initially proposed design proved inadequate, the iterative

approach was taken to yield an alternative design consistent

with the assumptions made above.
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II. THE FALCON PROGRAM

The FALCON optical design and evaluation program was

written by Dr. John Loomis while he was a student at the

Optical Sciences Center, University of Arizona during the

period from 1975 to 1980 (Ref 2:1). The program is written

in Fortran for use on Control Data Corporation (CDC) Cyber

computers. It may be used in either an interactive or a

batch environment using any suitable input, however, in

interactive mode there are graphics routines in FALCON that

are written for use with Tektronix graphics terminals

(nominally Tekronix 4025).

FALCON consists of a number of program segments that

are called by the user through commands. The program is

capable of handling a wide variety of optical systems,

the components of which may consist of spherics, torics,

conics, higher order aspherics, diffraction gratings, and

Fresnel lenses, all of which may be either transmissive or

reflective. Surfact tilts and decentering of components can

also be accommodated.

Evaluation techniques used by FALCON include paraxial

and real ray tracing, calculation of classic third and fifth

order ray aberrations, ray fans, spot diagrams, wavefront

variance and Strehl ratio determination, radial and knife

edge energy distributions, and optical transfer functions

(Ref 2:1).
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FALCON is a computer program to assist in the evaluation

and design of optical systems. It is not an automatic design

program. There exists no provision within FALCON to specify

a set of acceptable aberration parameters and an approxi-

mation to the desired system specification, to allow the

program to iteratively refine the design until the acceptable

design constraints are met. The somewhat less than automatic

nature of the program is not, however, a serious drawback

for the novice designer. This is primarily true because

without an automatic feature, FALCON forces the novice

designer into an understanding of the affects of performing

different manipulations on the system. FALCON is therefore

intended to assist a designer by providing the appropriate

numeric and graphic output to aid the designer in his task.

Ob.ject !-lane Image 1lane

Y

, I a2

Chief
Ray

o 1 2 3

Figure 2-1. FALCON Coordinates and Symbology.
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FALCON uses a standard right-handed rectangular coordinate

system. Initially, the Z-axis is taken as the optical

axis with light propagating in the positive Z direction

(from left to right). The coordinate system is shown in

Figure 2-1 with some standard symbology used within

FALCON.

The notation used is similar to that used by Lea (Ref

5). The subscripts "b" indicate parameters associated with

the chief ray. The subscripts "a" relate to the axial ray.

The second subscript, an integer, indicates the surface at

which a ray is being considered. Distances between surfaces

are measured along the optical axis from vertex to vertex

or from and to the centers of clear apertures or obstructions.

The distance from the object to the first surface can be

specified as any distance but if none is specified, the

default value is 10 10 units. The Y-Z plane is taken as the

tangential plane. The X-Z plane is taken to be the sagittal

plane. These terms are defined in the glossary ( Appendix V).

Axial and chief rays are traced in the tangential plane.

Optical System Input

A LENS command is used to place FALCON in the mode

where it can accept optical system specifications. Next

FALCON allows the user to input up to 70 characters of text

as a brief description of the system. This single line of

text will be used as a caption for graphic output. Each line

after the description specifies a surface in the optical -

system. Surfaces are specified proceeding from left to right
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along the Z axis for uniaxial systems. For non-uniaxial

systems, the system is specified as light would propagate

through the system with the input to the system from the

left. In either case the first surface specified is the

object surface. This is defined by means of the axial and

chief rays. The chief ray may be specified in either of two

ways. The first way utilizes the identifier SCY followed by

the parameters YbO and Ybl as shown in Figure 2-1. YbO

is the object height at which the chief ray starts and Ybl

is the height of the chief ray at the first surface. To

avoid mistakes, whenever possible it is prudent to specify

Yb0 and have the code calculate Ybl. The second way to

specify the chief ray utilizes the YFANG identifier followed

by the angle UbO in degrees followed by Ybl as before. By

omitting Ybl FALCON calculates the ray height needed at

surface 1 to allow the chief ray to pass through the center

of the aperture stop. If no aperture stop is specified, the

chief ray is then directed to the vertex of surface 1. If a

WV is present, up to five wavelengths (measured in microns)

may be specified. The first of these wavelengths is taken as

the design wavelength. If no WV identifier is present,

FALCON defaults to the values 0.58756, 0.48613, 0.65627,

0.43584, and 0.70652 microns for the five wavelengths. The

remaining lines are used to specify optical surfaces. This

is done by specifying the radius of curvature of that surface

preceeded by the RD identifier or by specifying the curvature

(reciprocal of the radius of curvature) preceeded by the CV

8



identifier. The index of refraction of the medium following

the present surface is specified using the GLASS identifier

followed by the index of refraction. As an alternative, the

refractive index may be specified by choosing a specific type

of glass from the Schott glass catalog. Such a catalog,

although not complete, is currently installed in the FALCON

program. To use this feature, the identifier SCHOTT is used

followed by the desired glass type. A single thin lens may

be specified to FALCON as shown in Figure 2-2.

LENS

LI SINGLE THIN LENS EXAMPLE

SAY 10 SCY -5 TH 50 UNITS CM

CV .01 TH 2 SCHOTT BK7

RD 200 TH 500 GLASS 1.0

END

Figure 2-2. Single Thin Lens Input Example

In addition to the refractive surfaces specified in

Figure 2-2, there are several other options available.

Reflective surfaces are specified by adding the identifier

REFL to the line specifying a given surface. A CLAP x y or

COBS x y specifies a clear aperture or a central obstruction,

respectively. if values for both x and y are included, they

specify the x and y semiaxes for an elliptical aperture or

obstruction. If the y parameter is excluded, the x value is

taken as the radius of a circular aperture. A rectangular

9



aperture can be specified by including the RECT identifier in

addition to using the CLAP or COBS identifier (on the same

command line). In this case, the x and y values indicate

half of the X and Y dimensions of the rectangle, respectively.

If the y parameter is omitted, the aperture is interpreted

as a square. A small idiosyncratic error within the program

requires the long axis of a rectangular aperture to be

aligned in the Y direction. This may, in some cases cause

difficulties, however, for the systems considered in this

effort, the problem was worked around without difficulty.

An ASTOP identifier may also be included to identify the

current surface as an aperture stop.

FALCON is capable of handling a host of aspheric

surfaces. To identify the current surface as a conic surface

of revolution about the optical axis, both the CV identifier

and a conic constant must be specified. The conic constant

is specified by the CC identifier followed by a parameter k

where k=-(a 2-b 2)/a where a, and b, are the semimajor and

minor axes of the conic surface, respectively (Ref 2:39).

General aspheric coefficients are specified by the ASPH

identifier followed by four parameters representing fourth,

sixth, eighth, and tenth order surface deformations,

respectively. Zero values are assumed for missing coef-

ficients (Ref 2:38).

Toric surfaces have different curvatures in both the

tangential and sagittal planes. A general toric surface has

an axis of rotation normal to the optical axis. If the axis

10



of rotation is parallel to the Y axis, the toric is a Y

toric, and similarly, if the axis of rotation is parallel to

the X axis the toric is an X toric. To identify a surface as

a Y toric, the identifier takes the form CVY c', where c' is

the curvature of revolution of the surface in the X-Z plane.

Similarly, the identifier CVX c specifies and X toric, where c

is the curvature of revolution of the surface in the Y-Z

plane. Alternatively, the identifiers RDX and RDY can be

used to specify X and Y torics, respectively, where the

parameter following each is the radius of curvature (1/c'

or 1/c). If the curvature of revolution is omitted or speci-

fied as zero, the respective toric is a cylinder. Higher

order aspherics can be built into toric surfaces by using

the ASPH identifier as described earlier.

Paraxial Solves. Written into the FALCON program is a

subroutine that makes use of paraxial ray data to calculate

either curvatures or distances to produce some desired effect

on either the axial or the chief ray angle. The desired

result, for example, may be a given ray angle after

refraction or a required ray height on the following

surface. Solves are available to adjust the curvature of a

given surface or the distance between surfaces to achieve

this result. The FALCON program has ten solves available for

use. These are summarized below (Ref 8:10):

Identifier Type Solve Parameter

PUY u Curvature u is the desired angle after

reflection or refraction.

11



SPY y Curvature y is the desired ray height

at the next surface.

PIY i Curvature i is the desired axial ray

angle of incidence.

APY Curvature Adjusts curvature so

i+u=O (the aplantic

condition).

PUCY u Curvature Same as PUY but for chief

ray.

SPCY y Curvature Same as SPY but for chief

ray.

PICY i Curvature Same as PIY but for chief

ray.

P1 y Thickness Adjusts distance to next

surface so axial ray hits

at y.

PCY y Thickness Same as PY but for chief

ray.

Paraxial solves are very powerful tools for the designer

in that any angle of incidence or refraction can be con-

trolled, or any unknown distance can automatically be

determined (Ref 8:11).

Parameter Pickups. Parameter pickups are used to define

properties of the current surface in terms of parameters at a

different surface. As an example of how this works, the

entry NAME, or any other identifier, is included in the input

record for a given surface n. The identifier n is stored in

12



the data block associated with the surface n. By including

the entry NAME PICKUP n in the entry for another surface J,

it will cause FALCON to scan the data block for the surface n

looking for the word NAME. If the word NAME is found,

parameters are picked up from that location and used to

specify the surface J. The parameter n tells the program

which line to look for ( Ref 2:27).

Tilts and Decenters. Tilt and decenter identifiers

allow the location and orientation of a given surface to

vary with the local coordinate system of the surface. The

key here is the LOCAL coordinate system. Decentering is

an offset in the local X-Y plane, normal to the optical

axis, as defined by the previous surface. The distance

between the current surface and the preceeding one also

enters into the consideration. The TILT function is defined

by the Euler angles (in degrees). This allows the coordinate

system associated with a surface to be tilted in any or all

of three different planes. Positive angles correspond to

counterclockwise rotations in the appropriate planes as

follows:

X-axis through angle a

New Y-axis through angle S

New Z-axis through angle y

13



This is shown somewhat more clearly in Figure 2-3.

Y y Y
Ix x x

YY

I I / -
z.o

>z z

Figure 2-3. Euler Angles

The decenter identifier (DEC Yd Xd) indicates that

the local coordinate system for the current surface is

to be shifted an amount, Yd along the Y-direction and an

amount Xd in the X-direction. Tilt and decenter is shown

in Figure 2-4.

Ii Iy

I -

/ d
/

Figure 2-4. Tilt and Decenter Operations.
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Evaluation Commands

After the optical system is specified, FALCON offers

several commands to evaluate the system. The outputs

resulting from the commands take graphic form, tabular form

or a combination of both. Those commands resulting in

tabular output are LEPRT, OCON, FORD, RAY, PUPIL, and ZPOLY.

These commands along with some of the more useful options are

discussed in the following pages.

EFL BF F/NBR LENGTH OID T-MAG

9.9999 14.0502 5.77 3.5523 42.6025 -.577084

BASIC SYSTEM DATA UNITS CM

SURF CURVATURE RADIUS THICKNESS MEDIUM INDEX

0 0.000000 INFINITE 25.000000 1.620000

1 .252850 3.954914 .600000

2 -.014740 -67.842605 1.065410

3 -.199420 -5.014542 .150000 1.621000

4 .259730 3.850152 1.136910

5 .050650 19.743337 .600000 1.620000

6 -.245880 -4.067025 14.050150

7 0.000000 INFINITE 0.000000

REFRACTIVE INDICES

SURF Ni N2 N3 N4 N5 DF

1 1.620000 1.000000 1.000000 1.000000 1.000000 -1.492

3 1.621000 1.000000 1.000000 1.000000 1.000000 -1.487

5 1.620000 1.000000 1.000000 1.000000 1.000000 -1.492

V;VLN .58756 .48613 .65627 .43584 .70652

Figure 2-5. LEPRT Command Output
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The LEPRT (LEns PRinT) command generates several tables

of basic information about the optical system. An example of

a typical output from the LEPRT command is shown in Figure

2-5. The first table gives the effective focal length (EFL).

the back focal length (BFL), the F number (F/NBR), the axial

distance from the first surface to the last surface

preceeding the image (LENGTH), and the object-to-image

distance (OID). The remaining tables are self explanatory.

The LIST command lists all the surfaces specified in the

lens deck as specified by the LENS command. The output from

this command will appear identical to an optical system

previously specified. It is used primarily to view the

system parameters prior to editing. See Figure 2-2.

The OCON command provides the same information as the

first two lines of the LEPRT output, but in addition, it also

identifies the primary surfaces within the system. A typical

OCON output is shown in Figure 2-6. The abbreviations used

are mnemonically derived from the surfaces that they

represent; ER indicates eye relief, EPR denotes the exit pupil

radius, A-MAG indicates angular magnification, and LENGTH

denotes the distance from the first surface to the surface

preceeding the image surface.

The PARAX command provides a paraxial ray trace table as

its output. It gives ray heights and angles for both chief

and axial rays throughout the entire optical system. A

sample PARAX output is shown in Figure 2-7.

16



-- OCON

ER EPR A-MAG LENGTH

578.0160 6.0000 -1.25 546.9

XZ PLANE

ER EPR A-MAG LENGTH

17320.3009 6.0068 -.125 546.9

Figure 2-6. OCON Command Output

PARAXIAL TRACE AT WAVELENGTH 1

SURF AXIAL Y CHIEF Y AXIAL U CHIEF U

0 0.000000 -1.500000 .050000 .060000

1 1.250000 0.000000 -.090098 .037037

2 1.195941 .022222 -.156888 .059797

3 1.028791 .085930 -.018188 .043454

4 1.026063 .092449 .136013 .085350

5 1.180697 .189484 .061071 .049012

6 1.217340 .218891 -.086642 .046030

7 .000000 .865626 -.086642 .046030

Figure 2-7. PARAX Command Output

The FORD command produces an output consisting of third

and fifth order ray aberration coefficients. For focal sys-

tems, the output is given in the linear units specified in

the LENS deck. If a system is designated as AFOCAL, the

output is given in radians. These coefficients can, however,

be shown to be the classical Seidel coefficients easily

17



calculated by hand using the forms from Lea (Ref 5:93,

8:14). The output produced by the FORD command are shown

in Figure 2-8. The mnemonics below the numeric values

indicate the respective parameters. For example, SA3

indicates that the numeric value in the corresponding

position is the third order spherical aberration coefficient,

measured in centimeters.

Aberration coefficients may be output as unconverted

Buchdahl coefficients using the BUCH option after the FORD

command. To convert between transverse, Buchdahl and

angular coefficients, the following conversion factors jj

can be used to multiply the FORD BUCH outputs:

i = 1 for Buchdahl coefficients

I' = i/(2n'u') for transverse measure

S1/(2n'Yp) for angular measure

TRANSVERSE ABERRATIONS AT WAVELENTH 1 UNITS CM

-.024579 .001375 .000694 -.000123 -.001298

.013922 .009143 .000004 .000000 .000014

.004596 0.000000 0.000000 2.566728 .252110

.000499 .003250 .000741 .001214 .001295

.000302 .000197 .000341 -.000975

SA3 CMA3 AST3 DIS3 PTZ3

SA 5 CMA5 AST5 DIS5 TPZ5

SA7 PAC PLC SAC SLC

ELCMA TOBSA SOBSA Ml M3

Nl N2 PSA3 PCMA3

Figure 2-8. FORD Command Output
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where u' and n' are the ray angle and refractive index,

respectively, in image space. Yp is the height of the

given ray in the exit pupil (Ref 2:64). The RAY command

traces an individual ray through the optical system. Ray

data are printed for each surface beginning with each

surface following the object. The RAY command has the

format RAY y x n. The parameters x and y are fractional

reference surface coordinates. Unless otherwise specified,

the first surface following the object is the reference

surface. The parameter n is the wavelength number (one

through five) specifying the wavelength of the ray to be

traced (as defined by the wv identifier at surface 0, or

by default). A table of data for the various optical

surfaces will be printed. Ray data are printed for the

reference surface and each surface thereafter. The data

includes the local coordinates of the ray at the surface,

the optical path length of the ray in the space following

the surface, and the ray angle in both X-Z and Y-Z planes.

The PUPIL command is used to create a ray matrix file

consisting of the number of rays specified in the command

(i.e. PUPIL n). If a WVL option is used followed by one or

more wavelength numbers, n rays are traced at each wave-

length. The total number of rays in the ray matrix cannot

exceed 1000. The rays that comprise the ray matrix all

start at the on-axis object point and proceed to the

first surface (or the surface specified as the reference

surface) where they form a uniformly distributed grid. The

grid spacing is given by (A/n)' where A is the transmission
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area and n is the number of rays. The transmission area

is the area of the clear aperture minus any obstructions

(Ref 2:83). Ray trace data are calculated and saved for

subsequent calculations.

The ZPOLY commnand utilizes the ray matrix file

generated by the PUPIL command and fits a set of Zernike

polynomials to the optical path difference data contained

in that file. The ZPOLY command calculates a geometrical

approximation to the wavefront at the exit pupil. From this

approximation, the Strehl ratio (discussed in Appendix III)

is then calculated. A typical output from the ZPOLY command

is shown in Figure 2-9.

Graphics Commands

The FALCON code has, within its repertoire, an extensive

capability to generate graphic outputs. These commands

yield the capability to generate system diagrams, energy

distribution plots, wavefront maps, wave fans and spot

diagrams. Each command is discussed individually with some

of the more useful options. For a complete description of

commands and options, refer to the FALCON User's Manual

(Ref 2).

In order to produce graphic output, first the terminal

must be prepared to accept graphic output from the Cyber

computer. Procedures for doing this using the Tektronix

4025 terminal can be found in Appendix II. Secondly,

the FALCON code must be placed in graphics mode by entering

the command SYSTEM TEI( ON. Without this command FALCON is
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FIELD ANGLE 0.00 DEG

TERMS RMS

0 .533

TILT 1 .533

FOCUS 2 .099

4TH ORDER 5 .054

6TH ORDER 9 .001

8TH ORDER 14 .000

10TH ORDER 21 .000

STREHL RATIO .678 AT DIFFRACTION FOCUS

FOURTH ORDER ABERRATIONS

MAGNITUDE ANGLE DESIGNATION

.285 90.0 TILT

4.380 DEFOCUS

.338 0.0 ASTIGMATISM

.261 90.0 COMA

.030 SPHERICAL ABERRATION

RADIAL COEFFICIENTS

ORDER ZERNIKE ASPHERIC RAYS

2 2.185 4.363 .008726

4 .001 .006 .000024

6 .000 .000 .000000

8 .000 .000 .000001

10 .000 .000 .000001

12 .000 .000 .000000

Figure 2-9. ZPOLY Command Output.
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capable of "line printer graphics" only.

The DISPLA command produces a cross sectional drawing

of the optical system currently in active memory. This

output provides a direct visual check on the construction of

the system. Errors made in specifying the system resulting

in incorrect curvatures, placement, or orientation can be

immediately detected where numeric output would require

close scrutiny to detect a similar mistake. By default, the

optical layouts produced using the DISPLA command are

drawn in the Y-Z plane. By including the option XZ after the

[)ISPLA command the diagram is drawn in the X-Z plane. The

optical layout is automatically scaled by FALCON, however,

by including the option SCL sf, the scale factor, sf, may

be specified by the user. The scale factor is displayed

in the lower left corner of the output.

The LAYOUT command, alone or with the options described

for the DISPLA command, produces output identical to that

produced by the DISPLA command. The LAYOUT command

differs from the DISPLA command in that it allows the user

to draw rays on the diagram as well as optical surfaces.

This is done by including the command, RAY f, on the LAYOUT

command line or alone on subsequent command lines. The

parameter f specifies the fractional distance within the

reference surface at which the ray is drawn, hence the commands

RAY 1 and RAY -1 would draw the marginal rays. An output

using the LAYOUT command is shown in Figure 2-10.
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Figure 2-10. LAYOUT Command Output

There are two commands within FALCON that produce energy

distribution plots (percent energy vs distance). The SPOT

RED command calculates the fraction of rays that fall within

a circle of given radius and displays the results as a

function of radial distance (Ref 2:92). The output is

called the radial energy distribution. It corresponds

physically to the amount of energy transmitted through a

variable aperture in the image plane. For afocal systems

the radius is expressed in angular measure and the per-

centage of energy is expressed as a function of angular

deviation.

There are several options available for use with the

SPOT RED command. The CENT y x option allows the user

23



to specify the center of the energy distribution where y

and x are specified in the image plane. Without the CENT

option, FALCON calculates the centroid of the image and uses

that point as the center of the energy distribution. The

SCL rmax i option allows the user to specify the maximumir

radius to be specified on the horizontal axis, rmax, and

the increment used in plotting, i.

The ESCAN e option interpolates percent energy values

from the data plotted and prints a table of these data in

equal energy increments as specified by the parameter e.

GEOi ETRIC SPOT

100

60

20

, 0 .004o 00 .012 .01o
RAIUS'C

Figure 2-11. Radial Energy Distribution Plot
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If no value for e is provided, the program defaults to an

* energy increment of five percent. Conversely, the LIST

option prints out a table of percent energy values in equal

increments of radius. The maximum radius and the increment

are provided by the SCL option. A typical SPOT RED command

output is shown in Figure 2-11.

The SPOT RED 6 command calculates and plots the

fraction of rays that are uncovered as a straight knife

is moved across the image plane. The parameter e is the

GEOMETRIC SPOT

60

40

2C

AM .000

Figure 2-12. Knife Edge Distribution Plot
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angle made by the knife edge and the Y axis. Positive angles

result from clockwise rotations of the knife edge when

looking from object to image in the positive Z direction

(see figure 2-1). When 0 is zero, the knife edge is trans-

parent to the left (positive X direction) and opaque to the

right (negative X direction). The knife edge moves in a

direction perpindicular to the edge so as to increase the

unobscured aperture. If left unspecified, the program chooses

a default value of zero for 0. For the case where e equals

zero, this corresponds to motion in the negative X direction.

All options except CENT used with the SPOT RED command can

be used with the SPOT KED command. A typical SPOT KED

command output is shown in Figure 2-12.

The command WAMAP s generates a two dimensional contour

plot of the wavefront at the image plane. The parameter s

specifies the contour interval in wavelengths. If no contour

interval is chosen, the program defaults to a value that will

produce an uncluttered output. The wavefront is approximated

by fitting a set of Zernike polynomials to the data in the

ray matrix file generated by the PUPIL command, hence a

PUPIL command must preceed a WAMAP command. The WAMAP command

generates a two dimensional contour plot of the wavefront as

approximated by the set of Zernike polynomials. The

PLOT3D s option causes the program to generate a three

dimensional isometric plot of the wavefront. For this option

the parameter s is a scale factor whose value must lie within

the interval O<s<l. Typical WAMAP and WAMAP PLOT 3D outputs
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Figure 2-13. Contour Wavefront Plot

are shown in Figures 2-13 and 2-14, respectively.

A fan of rays is a collection of rays that starts from

the same object point and intersects the reference surface

(i.e. the first surface unless otherwise specified) at

equally spaced distances along a specified line (Ref 2:75).

The FANS v command generates two sets of fans for each
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Ib

Figure 2-14. Isometric Wavefront Plot

off-axis object point. One fan is traced in the tangential

plane (the Y-Z plane). The line of intersection for this fan

with the reference surface is the Y axis. The other fan,

traced in the sagittal plane, intersects the reference surface

along the X axis (Ref 2-75). These rays are called skew rays.

Skew rays have both X and Y components, however, only the Y

component is displayed. Only the tangential plane is dis-

played at zero to avoid duplicating information. The

sagittal fan plot is an odd function (symmetric about the

origin) so only the results for the positive X axis is

plotted. The optional parameter, v, allows the user to specify
the vertical scale. The FOBS f1 f2 f3 option allows the user

to select three fractional field positions for the object

point. If this option is not used, the default value for

f1 ' f2 , and f3 are 1, .707, and 0 respectively. The WVL
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option allows the choice of up to three previously specified

wavelengths. This is done by including on the FANS command
F

line, the identifier WVL followed by the desired wavelength

numbers (one through five). A typical FANS command output

is shown in Figure 2-15.

The tangential and sagittal fans previously discussed

take into account only those rays passing through a cross

shaped aperture over the reference surface. To include all

possible skew rays it is necessary to divide the lens aperture

into a uniform grid, place a ray intersection at each grid

intersection, and trace these rays through the optical system.

By assuming that each ray carries the same amount of energy,

the intersection of these rays with the Gaussian focal plane

will be a fair representation of the image that can be

expected (Ref 11:152).

The SPOT PLOT command generates such a grid of rays on

the reference surface, the rays for which all start at the

on-axis object point. The number of rays is specified by

the PUPIL command and previously stored in the ray matrix

file. By using the SPOT PLOT command, up to 1000 rays

can be traced through the system to the image plane. The

resulting spot diagram is a graphic representation of the

intersection of these rays with the image plane.

There are several options that can be used with the SPOT

PLOT command. The SPOT v option specifies the scale of the

plot. By specifying a value for the parameter v, the user

can control the overall size of the diagram. Larger numbers
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Figure 2-15. Fan Plots
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for v yield smaller plots and vice versa. The OFFSET xc

Y option allows the user to shift the position of the spot

diagram on the screen or page. The shift in origin occurs

at the image plane. The PUPIL option calculates the shift

necessary to transfer the spot diagram from the image plane

to the exit pupil plane. The SYMBOL option causes the use

of a different plotting symbol (in lieu of dots) for each

.034o cr,

Figure 2-16. Spot Plot

wavelength being traced. This aids in isolating color

effects. A sample SPOT PLOT IS shown in Figure 2-16.
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Lens Library

The FALCON program has the provision to store many

optical systems in permanent storage in library files.

These files are maintained by the FALCON program. Individual

data sets may be inserted, retrieved, and deleted. The

command governing all library functions is LIB. The options

PUT, GET, DEL, and CAT instruct the program to insert,

retrieve, delete, and comprehensively list data sets (lens

decks) by name. After the PUT, GET, or DEL option is

specified, a data set name must be included. If using the

PUT option a new name of the user's choosing is specified.

To retrieve or delete a data set the user must specify a

previously stored data set name. The CAT option lists

each data set in the library by the name assigned to it.
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III. TRIPLET EVALUATION

In this chapter the use of the FALCON code is demon-

strated by evaluating a particular type of lens known as

a Cooke triplet. The Cooke triplet consists of a single

negative lens between two positive lenses, separated by air

spaces (Ref 3:10-1). This lens is used for demonstration

because it illustrates most of the problems encountered in

the design of any optical system. Many other types of lenses

are either composed of or derivatives of the basic triplet

design (e.g. TESSAR, SONNAR, and MAGNAR telephoto) (Ref

4:238) (Ref 15:160. The triplet is used extensively as a

photographic objective (Ref 3:10-1).

The Cooke triplet was originally designed by H. D.

Taylor in 1895 who described how he was able to correct

astigmatism and field curvature using three lens elements

separated by air spaces (Ref 3:10-1). Full advantage was

taken of the various parameters which can be altered in a

system of three separated elements (Ref 4:238). Figure 3-1

shows the triplet to be evaluated.

Using the method described by Lea, (Ref 5:42) the

triplet was first evaluated using manually performed paraxial

raytrace calculations. These calculations were then used to

verify the output of FALCON.

The triplet was examined in three slightly different

configurations to observe the changes resulting from

- adjusting the distance between surfaces 4 and 5, and from an

off axis object point. The triplet chosen is taken from the
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Military Standard Handbook MIL-HDBK-141-Optical Design.

Triplet Description. The triplet is composed of three

transmissive elements aligned on a common axis, each having

two spherical surfaces. All distances within the system are

measured on the optical axis. In the original triplet system

as published, the object surface is located 25 cm to the left

of the first surface. The axial ray strikes the first

surface at a height of 1.25 cm above the optical axis. The

first surface has a radius of curvature of 3.9549 cm. The

glass from which the first element is constructed has an

index of refraction of 1.620. The thickness of the first

element is 0.6 cm. The second surface has a radius of

curvature of -68.02 cm. By convention, spherical surfaces

whose concave surfaces lie to the right have positive radii

of curvature. There is an air space between surfaces two

and three whose thickness is 0.15 cm. Surface three, follow-

ing the air space, has a radius of curvature of -5.015 cm

followed by a 0.15 cm thickness of glass with a refractive

index of 1.621. Surface 4, comprising the right hand side

of element 2, has a radius of curvature of 3.850 cm. An

air space of 1.13691 cm follows element 2. The air space is

followed by surface 5 having a radius of curvature of

19.743 cm. Element 3 has a thickness of 0.6 cm and is con-

structed of glass with a refractive index of 1.620 as is

element 1. Element 3 is followed by an air space. The lens

arrangement is shown schematically in Figure 3-1 with some of

the notation used in this chapter.
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Element 1 .-lement 2 Zlement 3

'aly
ja

Object 25 cm .6 cm .1 5cm 1.3691 .6cm,

3 5 56

Figure 3-1. Cooke Triplet

Manual Ray Tracing

In order to gain confidence in the outputs of the FALCON

code, a manual paraxial ray trace was performed. The results

were compared with some of the code's output with good

agreement (to be discussed in some detail later). The

manual calculations also serve to demonstrate some of the

internal workings of the code. Ray tracing will be per-

formed using the method described by Lea (Ref 5) and is

demonstrated in the paragraphs that follow.

To begin, each known parameter is entered into the first

section of the ray trace table as in Figure 3-2.

Surface 1 2 3 4 5 6 7

Curvature 0.0 .25285 -.01474 -.19942 .25973 .05065 -.24588 0.

Thickness 25.0 0.6 1.06541 0.15 1.13691 0.6 14.05(

Index 1.00 1.620 1.00 1.621 1.00 1.620 1.00

Figure 3-2. Ray Trace Table (First Section)
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For purposes of these calculations, thickness (t) is

measured in centimeters, curvature (c) is defined as the

reciprocal of the radius of curvature (in cm), and the

index refraction (n) is dimensionless.

The second section of the ray trace table can now be

completed using calculated values of the "reduced thickness"

* (tin) and the power P (P={n'-nlc). The variable n'

represents the index of refraction of the medium following

the surface currently under consideration. The completed

second section of the ray trace table is shown in Figure 3-3.

Surface 1 2 3 4 5 6 7 8

Power - .15677 - .00914 .12384 .16229 -.03140 - .15245

t/n 25.0 .37037 1.06541 .09254 1.13691 .37037 14.0515

Figure 3-3. Ray Trace (Second Section)

Once the second section is completed, the first

section is no longer needed. At this point, all known

information is inserted into the third and final section

of the ray trace table. In this section of the table, y

represents the height of a ray above the optical axis

measured at a surface. The variable u represents the angle,

measured with respect to the optical axis, at which a ray

enters or leaves a given surface. The subscript "a" denotes

the axial ray (starting from the on-axis object point) and

the subscript "b" denotes the chief ray (passing through the

center of the aperture stop). Using what Lea describes as

the "mindless hop, skip and jump approach", the refraction

equation (3.1) and the transfer equation (3.2) yield values
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to complete section three of the ray trace table. The

completed third section is shown in Figure 3-4.

Surface 1 2 3 4 5 6 7 8

Y 0.0 1.25 1.19594 1.02879 1.02606 1.18070 1.21743 0.0a

nu .050 -.14596 -.15689 -.02948 .13601 .09894 -.08664a

Yb -10.0 -.75 -.56942 -.04440 .00069 .55481 .72887 5.773,

nub .37 .8758 .49278 .48728 .48739 .46997 .35886

Figure 3-4. Ray Trace Table (Third Section)

This method has the distinct advantage that several

other system parameters can readily be calculated from the

information contained in the ray trace table. From an

examination of the axial ray trace data (subscripted "a"),

the following parameters are easily calculated.

1. Back Focal Length (bfl)

bfl = -ya7/U = 1.21734/.08644 = -14.051
a7a8

2. Effective Focal Length (efl)

efl = -Ya2/ua8 = -1.25/-.08664 = 14.42

3. Numerical Aperture (NA)

NA = n8 sin ua 8 = sin .08664 = .08653 (rad)

4. Lateral Magnification (M1)
M = U/U = -. 057

5. F=Number (F#)

f# = l/[2(NA)I = 1/[2(.8653)) = 5.778
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By inspection of the calculated ray trace values for

the principal ray (subscripted "b"), the following parameters

are available.

1. Field Angle u b2 =20.63 degrees

2. Image Height Yb8 =17.63 cmi

From a single calculation, the Lagrange invariant can

also be calculated by the relation

H = n(u ayb - Ubya).

The Lagrange invariant, H, can be evaluated at any point

in the system for which the above paraxial ray trace parameters

are known. The value of H should remain constant throughout

- the system. The square of the Lagrange invariant is a

measure of the information capacity of a system (i.e. how

many independent points can be resolved by the system. For

the hypothetical optical system without aberrations, the

system is said to be diffraction limited; that is to say

the spot size is limited by diffraction in the aperture

of ti- system (Ref 5:50). For the diffraction limited

case, the number of resolvable spots, N, is given by the equation

N = 4H 2/N2

where X is the wavelength being considered. The value of

H is a direct measure of the difficulty of design and

manufacture (Ref 5:51).
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Achromatic Aberrations

In discussions of aberrations it is convenient to

define two planes as follows: The tangential plane, from

which the angle 0 is measured, is the plane containing the

optical axis and the off axis object point; throughout the

system the chief ray lies in the tangential plane (see

Figure 3-5). The sagittal plane is that plane which contains

the chief ray and is perpendicular to the tangential plane

throughout the system. There is only one tangential plane

throughout the system whereas the sagittal plane changes as

one proceeds to different spaces throughout the system

(Ref 6:308).

;anit al l-la n

| Ch.

Figure 3-5. Tangential and Sagittal Planes (Ref 5:82)
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The tangential and sagittal planes are simply vertical

and horizontal sections of the imaging bundle (Ref 5:82).

As the central ray of the imaging bundle, the principal ray

is the only ray that lies in both the tangential and sagittal

planes.

Wavefront Aberration Function. Any given wavefront

can be represented by a function of the three variables

r', h', and e as shown in Figure 3-6. If the wavefront, W,

exiting an optical system is expanded in terms of these

three variables, and if those terms allowed by symmetry

arguments are discarded, the resulting polynomial can be

written as

W=ar' 2 + a2h'r'coso + nIr #4

+ T 2r 3h'cos 0

2 2
+ Tr 3 r'h' Cos 0

+ n 4 r 
2h' 2

+ *I5r'h' 3cos 0

+ Higher Order Terms.

Ignoring the higher order terms, the coefficients a1 and

a2 are identified as defocus and sicbways shift, respectively.

The coefficients 7I through ii5 are identified as spherical

abberation, coma, astigmatism, field curvature, and

distortio4 respectively.
AV*-
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Figure 3-6. Wavefront Aberration Function Parameters

A coarse measure of the quality of the image produced

by an optical system is Optical Path Difference (OPD). The

OPD is the deviation of the real wavefront from an ideal,

perfectly spherical reference wavefront at full aperture and

field.

The OPD is simply a linear measure often expressed in

terms of the wavelength under consideration. A root mean

square OPD of one quarter of a wavelength indicates an

essentially diffraction limited system (Ref 5:88). According

to Rayleigh, there is no appreciable deterioration of the

image if the phase difference does not exceed v/2 (Ref 6:287).

Thus, the image quality of the wavefront will not be

seriously impaired provided the wavefront aberration does

exceed one quarter of a wavelength. It is often the case

where individual wavefront aberration coefficients are

41

- -- - u m n u mn m n .. . . . . .. . . . . . .. . . . . .. . .



quoted as OPD's. By setting the values of r' and h' both

equal to 1, where r'=r/rmax and h'=h/h max , in the wavefront

polynomial, the coefficients f are OPD's (Ref 5:88).

Seidel Aberration Function. In an aberrated optical

system, each ray will miss its Gaussian image point by an

amount ( 1,y ). The quantities c x and cy can each be

expanded in a power series in r', 0, and h' as follows:

a x = r sin 0 +o2r' h'sin 20

+ (o3+o4r'h 2sine

Cy = C r 3 cosO + 2h'(2 + cos 20)

+(3o3+o 4 )r'h' 2cos 0

+oh3

The coefficients 01 through a5 are the third order or Seidel

coefficients. The Seidel coefficients relate to the wave-

front coefficients (the n's) by the following relations:

01 = 4 11 1 /nkUak Spherical aberration

02 = 2/nkUak Coma

o3 = 3 /nkuak Astigmatism

a4 = (2n 4 _ 3 )/nkuak Field Curvature

05 =1 5 /nkuak Distortion

The third order Seidel coefficients are used extensively

in optical design; the aim of the exercise being to drive

them all to zero. This is usually impossible, however, and

the art of lens design is in deciding what balance of

aberrations will give best results.
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Third order Seidel coefficients can be directly

calculated entirely from paraxial ray trace data as was

generated earlier (pages 35-37) (Ref 5:92). The applicable

equations are given in Figure 3-7.

aI = -1/(2n'kuak) ZSai a2
a2 = -i/(2n'ku'ak) ESaiaib

03 = -i/(2n'kU'kUak ) ESai b2

' k ) E c/n' (n/n'-l)H204 = -i/(2n' kuak)

05 = -i/(2n'ku'ak) E[Sbiaib

- H(u' b2- u b2)

S = n(n/n' - l)Y (ia + ua )

Sb = n(n/n' - l)Yb(ib+u'b)

i =yc +u

Figure 3-7. Seidel Coefficients (Ref 5:93)

Calculating the Seidel coefficients is simply a matter of

substituting the appropriate quantities from the paraxial ray

trace table into the equations of Figure 3-7 and performing

the necessary algebra.

Triplet Analysis Using FALCON Code

The FALCON code is capable of performing most functions

involved in the analysis and design of optical systems. For

the purpose of analyzing a given design, many of these

capabilities will be exercised. Start-up procedures for

running the FALCON code are described in detail in Appendix II.
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System Input. Once FALCON is operating interactively,

the LENS statement is used to place the program into the

mode where it can accept specifications for a given optical

system.

Special entries are available to specify the starting

conditions of the axial and chief rays. The next several

lines, in general, will specify surface profiles, distances

between surfaces, and indices of refraction. The Cooke triplet

being considered here uses only spherical surfaces, re-

quiring the input of only a radius of curvature or its

reciprocal (i.e. the curvature) to specify the surface

profile. Although the FALCON program is capable of dealing

with conics and higher order aspherics, it is not necessary

to utilize these capabilities for the triplet.

The lens specification for the Cooke triplet being

considered is a shown in Figure 3-8.

LENS (1)

LI COOKE TRIPLET EXAMPLE (2)

SCY - 10 SAY 1.25 TH 25 UNITS CM (3)

CV .25285 TH .6 GLASS 1.62 (4)

CV -.01474 TH 1.06541 GLASS 1.0 (5)

CV -.199420 TII .15 GLASS 1.621 (6)

CV .25973 TH 1.13691 GLASS 1.0 (7)

CV .05065 TH .6 GLASS 1.62 (8)

CV -.24588 TH 14.05015 GLASS 1.0 (9)

END

Figure 3-8. FALCON Lens Specification - Cooke Triplet
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Line (1) is the LENS command line placing the FALCON code

in the mode where it is capable of accepting specifications

for an optical system. Line (2) is the caption/identifier

line. Line (3) contains the SAY identifier, which defines

the height at which the axial ray strikes the first surface,

and the SCY identifier which defines the height on the object

at which the chief ray begins. In line (3) the thickness

identifier, TH, defines the distance between the object and

the first surface. In lines (4), (5), (6), (7), (8), and

(9), the CV identifier defines the curvature of the respective

surface. The TH identifier defines the distance between the

6 surface under consideration and the next surface in centimeters.

The GLASS identifier defines the index of refraction of the

medium following each surface. The last line, (10), contains

only the word END which directs the program to return from

lens specification mode. The numbers in parentheses follow-

ing each line are included for reference only and are not

part of the lens specification.

After specifying the optical system, FALCON is ready to

begin with a host of analysis functions at the operators

command. A comparison of the output resulting from the

PARAX command with manual paraxial ray trace data lends

credence to the accuracy of the FALCON code. All axial and

chief ray heights agree to within five decimal places. The

same agreement holds for axial and chief ray angles. This

provides assurance that the system believed to have been

entered does in fact reside in the FALCON library. The

effective focal length, back focal length, and F-number
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FIELD ANGLE 0.00 DEG

BI-LATERAL SYMMETRY INVOKED

TERMS RMS

0 1.454

TILT 1 1.454

FOCUS 2 .192

4TH ORDER 5 .099

6TH ORDER 9 .007

8TH ORDER 14 .000

10TH ORDER 21 .000

STREHL RATIO .235 AT DIFFRACTION FOCUS

FOURTH ORDER ABERRATIONS

MAGNITUDE ANGLE DESIGNATION

.000 0.0 TILT

-9.990 DEFOCUS

.000 0.0 ASTIGMATISM

.000 0.0 COMA

-2.203 SPHERICAL ABERRATION

RADIAL COEFFICIENTS

ORDER ZERNIKE ASPHERIC RAYS

2 -4.987 -4.987 -. 009974

4 -. 369 -8.480 -. 033919

6 .262 2.978 .017867

8 .020 .851 .006805

10 .001 .140 .001404

12 .000 .049 .000593

Figure 3-9. ZPOLY LIST Output
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resulting from the LEPRT command also exhibit similar

agreement with manual calculations.

The ZPOLY LIST command produces several outputs as

discussed in Chapter 2. Among these, the Strehl Ratio

(discussed in Appendix IV.) was calculated to be 0.235

indicating a high loss in peak intensity due to aberrations.

The ZPOLY LIST output is shown in Figure 3-9 for the triplet

as published. The two dominant fourth order aberrations are

defocus at -9.99 wavelengths and spherical aberration at

-2.203 wavelengths. Since defocus does not enter into the

calculation of the Strehl ratio, spherical aberration will

be examined.

In the absence of all aberrations except spherical

aberration, the aberration function W is proportional to

the fourth power of the aperture radius. Those rays entering

the paraxial region come to a focus at the Gaussian focus.

Those rays entering in the marginal region intersect the

optical axis at the marginal focus. Those rays entering the

system in intermediate regions intersect the optical axis

somewhere between the Gaussian focus and the marginal focus

(Ref 6:309). One is then led to believe that by shifting the

focus to somewhere between the marginal and Gaussian foci

(e.g. circle of least confusion) that the spherical aberra-

tions can be reduced. A shift in focus was accomplished by

adjusting the distance between the second and third elements

from 1.13691 cm to 1.07600 cm.

The result was as expected; the spherical aberration
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decreased from -2.203 to -0.067 wavelengths. This resulted

in an increase in the Strehi ratio from 0.235 to a somewhat

more respectable 0.648. The adjustment did, however, in-

crease the defocus from -9.999 to 12.384. The inclusion of

an aperture to limit incoming rays to the near paraxial

region should serve to reduce spherical aberration, however

time constraints precluded further investigation. To reduce

the defocus the distance from surface 6 to the image plane

was increased from 14.05015 cm to 14.15522 cm. This reduced

the defocus to 0.000 wavelengths. The image plane adjust-

ment did slightly increase the magnitude of the spherical

aberration from -0.067 wavelengths to -0.078 wavelengths.

Tphe Strehl ratio remained at 0.648.

The elements of the new system (Strehl ratio =0.648)

were displaced from the optical axis a distance of -1.25 cm.'

The result was a system for which the effects of an off-axis

object could be evaluated. Table 3-1 and 3-2 summarize the

system parameters for the three systems being considered.

System Distance Between Surfaces (cm)

Description 1-2 2-3 3-4 4-5 5-6 6-7

Original Triplet 0.60 1.06541 0.1500 1.13691 0.600 14.05015

Adusted Triplet 0.60 1.06541 0.1500 1.07600 0.600 14.15522

Decentered Triplet 0.60 1.06541 0.1500 1.07600 0.600 14.15522

Table 3-1 Triplet Intersurface Distances
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System Aberrations (in wavelenths at .58746 nm)

Description Tilt Defocus Astig. Coma S.A. S.R.

Original 0.000 -9.999 0.000 0.000 -2.203 .235

Adjusted 0.000 0.000 0.000 0.000 0.078 .648

Decentered 2.547 1.331 1.374 1.768 -0.549 ---

Table 3-2. Triplet Aberrations and Strehl Ratio

.0040 cm

Figure 3-10. Spot Diagram for Original Triplet
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A spot diagram for the original triplet is shown in

Figure 3-10. The pattern shown represents a spot in the

focal plans consisting of 950 rays with an overall diameter

of 0.014 cm. The density of rays within the pattern is a

measure of the intensity distribution in the focal plane.

000 0 a 0

0 O0 0

0 0 00 O6 0
0 0 a

So00 0 00 0

00 c 0 %, 0

S0 0o o U 0 8o
°cP0°

o%

0 0 
0 O

0 00 00

.0020 cm

Figure 3-11. Spot Diagram for Adjusted Triplet

After the system was adjusted by decreasing the distance

between elements two and three from 1.13691 cm to 1.07600 cm

and by moving the focal plane to the position where the wave-
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front defocus was reduced to 0.000 wavelengths, a spot

diagram was again made. This spot diagram is shown in

Figure 3-11. The vast majority of rays in this diagram are

seen to cluster in a central bright spot. The diameter of

the central spot in this case is approximately 0.0020 cm

while the maximum diameter of the entire pattern is 0.0096 cm.

As expected, with the lower aberrations in the case of Figure

3-11, a more tightly focused spot is possible.

Contour plots of the wavefront before and after the

triplet was adjusted are shown in Figures 3-12 and 3-13,

respectively. In the case of the original triplet, as

published, (Figure 3-12) the contour interval is two wave-

lengths. The absence of contours near the center indicates

a relative flatness of the wavcfront across the center. The

relatively narrow gap between contours near the edge of the

plot indicates a greater curvature near the edge of the wave-

front than near the center. The single erratic contour near

the edge of the plot is probably due to diffraction. Figure

3-13 shows the contour plot of a wavefront emitted by the

triplet after adjustment. The contour interval in this case

is 0.200 wavelengths. Toward the center of the pattern the

contours are regularly spaced indicating a relatively even

curvature. Toward the edge, the distance between contours

narrows indicating a more sharply curved wavefront. Un-

fortunately, from the plots of Figures 3-12 and 3-13 there

is no way to determine the direction of curvature or if

reversals of curvature occur.
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Figure 3-12. Wavefront Contour Plot for Original Triplet
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Figure 3-13. Wavefront Contour Plot for Adjusted Triplet

Isometric wavefront plots are shown in Figures 3-14

and 3-15 for the original and adjusted triplets, respectively.

These plots remove the directional ambiguity inherent in

the contour plots of Figures 3-12 and 3-13. Unfortunately
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the FALCON code does not associate a scale with the

isometric plots, but qualitatively used in conjunction with

their respective contour plots they are very useful.

Figure 3-14. Isometric Wavefront Plot for Original Triplet

Figure 3-15. Isometric WavefrontPlot for Adjusted Triplet
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The isometric plot of Figure 3-14 shows a distinct

flatness across the center of the pattern as expected from

examination of the contour plot alone. Figure 3-1I% however

yields a somewhat more surprising result for the case of the

adjusted triplet. A dip is seen in the center of the

wavefront which would not have been obvious from examination

of the contour plot alone. The scaling of the isometric plot

is such that this effect is very prominent. The jagged

peaks around the edge of the pattern correspond to the

irregular polygons that appear around the edge of the contour

plot of Figure 3-13. They are a result of anomalies in the

plot program and should be ignored.

0 000

0 0 a
Do Do o

o oo 00

Figure 3-16. Spot Diagram for Decentered Triplet

In order to observe the effects of an off-axis object

point, the adjusted triplet was decentered -1.25 cm from the
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optical axis (-Y direction). The wavefront aberrations were

seen to increase as shown in Table 3-2. This resulted in a

reduction of the Strehl ratio to a point where the FALCON

code could no longer calculate it.

A spot diagram was made for the decentered system and is

II
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0 Figure 3-17. Contour wavefront Plot for Decentered Triplet
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shown in Figure 3-16. The diagram shows a bright central

spot with a difuse tail. This shape is characteristic of

the aberration, coma which typically results from tilted

or off-axis configurations. In this case the radius of the

central bright spot is approximately 0.007 cm. As expected,

this is somewhat less tightly focused than the centered

case due to the increased presence of aberrations.

The contour wavefront plot shown in Figure 3-17 and the

isometric plot of Figure 3-18 show a dramatic distortion of

the wavefront when compared to centered system of Figures

3-13 and 3-15. From the contour plot of Figure 3-17 it is

Figure 3-18. Isometric Wavefront Plot for Decentered Triplet
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difficult to interpret the shape of the wavefront. With a

contour interval of two wavelengths, much of the detail is

obscured. The isometric plot of Figure 3-18, however, gives

a good representation lending well to interpretation. The

central depression that was present in the centered system

is still present. The wavefront is also seen to tilt as

verified by the tilt entry for the decentered system of

Table 3-2.

The Cooke Triplet examined here allowed for the

demonstration of several of the capabilitities of the FALCON

code. In addition, the manual calculations performed lend

credence to the accuracy of the code's calculations and

provide some insight into how the code determines values

for various parameters. The original triplet was examined,

adjusted, and re-examined in an effort to demonstrate changes

resulting from small parametric adjustments. The system,

after adjustment, was also decentered to demonstrate the

effects of an off-axis object point on the aberrations

present, the Strehl ratio, and the wavefront output by the

system.
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IV. THE DESIGN PROBLEM: OFF-AXIS BEAM EXPANDER

Reflective off-axis beam expanders have the advantage

over centered systems that they avoid introducing an

obscuration into the beam thus allowing the beam to remain

contiguous (Ref 13:1141). For high power applications the

irradiance of the laser beam often precludes the use of

refractive optics. For high power applications where the use

of refractive optics is ruled out, and where the beam is

required to remain unobscured, the design solution often

consists of an off-axis reflective system.

The major disadvantage in using off-axis geometries

results from the tilting required of the surfaces to allow

the beam reflected off one mirror to pass by the previous

mirror unobstructed. By tilting the elements, aberrations

are introduced that would not otherwise be present. This

problem is elucidated by considering an ordinary on-axis

optical system such as a microscope. By tilting only one

element, the following defects are found in the center of

the eyepiece: coma, astigmatism, distortion, field tilt,

and lateral color (Ref 23:2169) . Similarly, the tilts

required in off-axis systems cause aberrations to be in-

troduced into the system. The basis of the tilted component

telescope (or beam expander) is simply that the objective

mirror reflects the "axis" to the side where correcting

elements can be employed without obstructing the light

Pef 23:21-69).

From a practical point of view, rotationally symmetric
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sur-faces are preferred for off-axis systems. Rotationally

symmetric surfaces produce beam expansion having uniform

(with respect to the X and Y directions) magnification.

The design studied here requires cylindrical optics to

produce a different magnification in each of the two

directions.

The design undertaken here arises from a requirement

for an unobscured beam expander to be used on a continuous

wave carbon dioxide laser proposed for construction at the

Air Force Weapons Laboratory, Kirtland Air Force Base, NM

(AFWL). The primary function of the beam expander is to

receive as its input a 1.5 cm by 15 cm rectangular beam

and to produce, as its output, a 12 cm by 12 cm square

collimated output beam. Cylindrical elements were used

because the system being considered receives a rectangular

inp~ut and produces a square output (non-uniform magnification).

Cylindrical mirrors are, by their shape alone, ideally

suited to expand or compress a beam in the dimension

perpendicular to the cylindrical axis leaving the dimension

aligned with the cylindrical axis unaffected.

The beam expander is to be part of a ring laser system

to be built to study the feasability of implementing similar

designs for use with a hydrogen fluoride laser system. The

method of mixing molecular hydrogen and molecular fluorine

to produce chemically excited HF produces a gain region whose

cross sectional geometry is a rectangle of high aspect ratio.

Thus, to efficiently extract energy from this gain region,
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a long narrow rectangular beam is necessary. From

diffraction considerations the beam divergence angle is

given by the equation

O = 1.22 X/D

where X is the wavelength (in this case, 10.6 microns)-

and D is the aperture size (beam dimension). From the

equation it is obvious that the narrow dimension of the

unexpanded beam (D=1.5 cm) would lead to a greater divergence

angle than the narrow dimension of the expanded beam (12 cm).

Optical systems used to transport the beam from the

near field to the far field will usually be fabricated with

X and Y dimensions of comparable magnitude (e.g. square

* or circular) . The beam should therefore be expanded in

such a manner as to fill the mirrors' apertures.

The system proposed by AFWL is in a conceptual stage

with system constraints not yet well defined. As a result,

several assumptions must be nade to define and limit the

design proposal. These assumptions include limiting the

overall length of the six meters and allowing the mirror

curvatures to assume any values governed only by the 6 meter

overall length constraint. There were no upper limits

placed on the aberration types and magnitudes that were

tolerable; however, the goal was to achieve diffraction

limited performance. It was from this point that the design

proceeded.

The purpose of this design study is to successfully

produce a design (or several designs) for an off-axis beam
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expander to accept a 1.5 cm rectangular input beam and

produce as its output a square 12 cm by 12 cm output beam.

System Description. The beam expander receives an

output from the gain cavity in the form of a rectangular

beam of dimensions 1.5 cm by 15 cm (X by Y). The first

mirror, a diverging cylindrical mirror, the long axis of

which is aligned with the Y axis, expands the narrow dimension

of the beam (i.e. the X dimension) from 1.5 cm to approxi-

mately 12 cm at the surface of mirror 2. Mirror 1 has no

effect on the Y dimension of the input beam. The input to

mirror 2 is therefore a 12 cm by 15 cm rectangular beam.

Mirror 2, a converging spherical mirror, collimates the

beam in the X direction and converges the beam in the Y

direction. Mirror 3, another diverging cylindrical mirror,

X

/ : ,Airror 1
,...- / R= 56 25

Sirror 2 -/

P =2 5PI

:'Irror

R =IO.OM

Figure 4-1. Beam Expander System Layout
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is aligned along the X axis. This mirror has no effect on

the collimated X dimension of the input beam, however it

acts to collimate the beam in the Y dimension, producing a

12 cm by 12 cm square collimated beam. A system layout

diagram is shown in Figure 4-1.

Design Constraints. The design began by placing some

constraints on the system. First, in order to keep the

overall size of the system within reason, an upper limit

of six meters in overall length was chosen. In addition,

since no optical components have been acquired to build the

system, sizes of curvatures would be bound only by the

arbitrary six meter restriction on the overall length of the

system. As a first attempt, curvatures would be limited to

cylinders and spheres without the use of higher order aspherics.

The General Design Approach. To begin, a first order

analysis was performed using a short BASIC language routine.

A listing is included in Appendix IV. The routine generated

first order solutions for a system to receive a 1.5 cm by

15 cm input and produce a square 12 cm by 12 cm output.

The routine is based on a matrix method first order solution

(Ref 20:174) for which the focal length of mirror 3 was

iteratively incremented. The BASIC code automatically

adjusted the curvatures of mirrors one and two and the

distances between the mirrors to produce a family of

solutions. Using this approach, several hundred possible

solutions were generated. Over a hundred of the previously

generated solutions were screened using the FALCON code. In
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the process, designs employing a converging cylindrical

mirror as mirror 3, located beyond the focus of mirror 2,

were found to yield categorically higher aberration

coefficients than those designs using a diverging cylindrical

mirror as mirror 3, located within the focus of mirror 2.

As a result, the former design approach was discarded in

favor of the latter. Eventually, the field was narrowed to

a few possible solutions. The discarded designs were

rejected primarily due to improper output dimensions,

poorly collimated output, or the existence of larger

aberrations than another solution. The reason that the 2
first order analysis produced solutions whose outputs were

not collimated or whose outputs were of incorrect dimensions

is that for the first order analysis, the tilt angles were

ignored and the system was effectively considered to be

on-axis (without tilting or decentering).

A table of preliminary solutions leading to the final
* 4

design is given in Table 4-1. Table 4-2 gives the wave-

front aberrations and Strehl ratios as calculated by the

FALCON ZPOLY LIST command for the solutions given in Table

4-1. Table 4-3 gives output beam dimensions and divergence

angles for the solutions of Table 4-1. Table 4-2 shows a

trend toward higher Strehl ratios and smaller wavefront

aberrations as one proceeds toward solutions with larger

distances between surfaces (proceeding downward on the table).

Table 4-3 gives beam dimensions and divergence angles as

calculated by the FALCON PARAX command. This was used to

64



distinguish "good" solutions from poorer ones having similar

aberrations and Strehl ratios.
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Preliminary Design Solutioas.

Mirror Curvatures (1/cm) Distances Between Surfaces (cm)

Mirror 1 Mirror 2 Mirror 3 M1-M2 M2-M3

1 .03200 .004000 .005000 109.4 25.0

2 .02133 .002667 .003333 164.1 37.5

3 .01600 .002000 .002500 207.8 50.0

4 .01280 .001600 .002000 273.4 62.5

5 .01067 .001333 .001667 328.1 75.0

6 .009143 .001143 .001429 382.8 87.5

7 .008000 .001000 .001250 437.5 100.0

8 .007805 .0009756 .001220 448.4 102.5

9 .007619 .0009524 .001190 459.4 105.0

10 .007442 .0009302 .001163 470.3 107.5

11 .007273 .0009091 .001136 481.2 110.5

12 .007111 .0008889 .001111 492.2 112.5

13 .006957 .0008696 .001087 503.1 115.0

14 .006809 .0008511 .001064 514.1 117.5

15 .006667 .0008333 .001042 525.0 120.0

16 .005631 .0008163 .001020 535.9 122.5

17 .006400 .0008000 .001000 546.9 125.0

Table 4-1. Preliminary Design Solutions
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Paraxial Output Beam Parameters

Beam Half-Dimension(cm) Divergence Angle (rad)

Y X HY x

1 6.000000 5.999040 .000000 .000010

2 5.997760 5.997761 .000010 .000011

3 6.000000 6.000000 .000000 .000005

4 6.000001 5.999885 .000000 .000002

5 6.002426 6.002806 -.000010 -.000006

6 6.000306 5.999538 -.000002 .000001

7 6.000001 6.000000 .000000 .000000

8 6.001223 5.999945 .000006 .000001

9 5.998754 6.000015 .000006 .000001

10 6.000678 6.000167 .000003 -.000001

11 5.999079 5.999941 .000005 .000001

12 5.999674 5.999929 .000002 .000000

13 5.999915 6.000140 .000000 .000000

14 6.000210 6.000445 -.000001 .000001

15 6.000986 6.000411 .000005 .000000

16 5.999169 6.000264 .000004 .000001

17 6.000001 6.000115 .000000 .000000

Table 4-2. Paraxial Output Beam Parameters

67



Aberrations and Strehi Ratios for Preliminary Solutions

(aberrations measured in wavelengths at 10.6 microns)

Tilt Defocus Astig. Coma S.A. Strehi Ratio

1 .36 1.346 .047 .362 .209 .528

2 .176 .756 .064 .161 .062 .881

3 .099 .654 .075 .090 .026 .959

4 .063 .509 .052 .058 .013 .983

5 .044 .493 .010 .040 .008 .992

6 .032 .358 .010 .029 .005 .996

7 .025 .307 .026 .023 .003 .997

8 .024 .335 .001 .021 .003 .998

9 .022 .257 .052 .020 .003 .997

10 .021 .305 .011 .020 .003 .998

11 .020 .260 .051 .019 .002 .997

12 .020 .262 .029 .018 .002 .998

13 .019 .266 .024 .017 .002 .998

14 .018 .263 .010 .016 .002 .999

15 .017 .281 .000 .016 .002 .999

16 .016 .232 .019 .015 .002 .998

17 .016 .243 .019 .014 .002 .999

Table 4-3. Aberrations and Strehi Ratios
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The Final Design. The lens deck for the final

design is listed in Table 4-4.

0 SAY 7.5 SAX .75 TH E1O WV 10.6 AFOCAL

1 TH 200 CLAP 7.5 .75 RECT

2 REFL TILT 1.5 TH -546.9 CV .0064 CVX

3 CV .0008 REFL TILT -3 TH 125 DEC -14.316

4 REFL TH -200 DEC -9.81 TILT 2 CV .001 CVY

5 END

Table 4-4. Beam Expander Input

In line 0 above, the object is described by axial rays in

the X direction at .75 cm and in the Y direction at 7.5 cm.

The FALCON code interprets this as an object symmetric about

the X and Y axes. The true size of the object is then

interpreted by the FALCON code as 1.5 cm by 15 cm. The

distance between the object and the surface following is

specified as 10 cm. This is the maximum distance per-

mitted and is used to provide an essentially collimated

input. The system is designated as afocal, indicating a

collimated output. This causes the FALCON code to output

aberration coefficients in angular measure. This will be

discussed in some detail later. Surface 1 is specified as

a clear aperture, centered on the Z axis, with an X

half-dimension of .75 cm and a Y half-dimension of 7.5 cm.

The distance between this surface and the following one is

specified as 200 cm. Line 2 describes mirror 1 as shown in

Figure 4-1. The mirror curvature (i.e. the reciprocal of
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the radius of curvature) is specified as .0064 cm. The surface

is tilted 1.5 degrees counterclockwise as specified by

the Euler angles described in chapter II. The distance

between mirrors 1 and 2 given as 546.9 cm. The identifier

CVX identifies the surface as a cylinder, the long axis of

which is aligned with the Y axis. Mirror 2, the spherical

mirror, is described in line 3. The DEC identifier indicates

that mirror 2 is decentered from the local Z axis of mirror 1

by -14.316 cm. The remaining parameters are as described for

the preceeding surface. Mirror 3 is described in line 4.

The CVY parameter without identifiers indicates a cylindrical

Y y
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Figure 4-2. Tilts and Decenters
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element, the axis of which is aligned with the X axis. All

remaining parameters are as described for previous surfaces.

The final design is shown diagramatically in Figure

4-1. Mirror 1 is a diverging cylindrical mirror with a

radius of curvature of 156.25 cm. The local Y and Z axes

of mirror 1 are tilted 1.5 degrees counterclockwise with

respect to the original Y and Z axes, respectively. This

produces an angle of 3 degrees subtended by the on-axis

incident and reflected beams at mirror 1. Mirror 2 is

separated from mirror 1 by 546.9 cm. Mirror 2 is a con-

verging spherical mirror with a radius of curvature of 12.5

meters. Mirror 2 is tilted 3 degrees clockwise with respect

to the Y axis, in the local YZ plane of mirror 1. This causes

- the incident and reflected on-axis rays at mirror 2 to

subtend an angle of 9 degrees. The distance between mirror

2 and mirror 3 is 125 cm. Mirror 3 is a diverging cylindrical

mirror with a radius of curvature of 10 meters. Mirror 3

is tilted 2 degrees counterclockwise with respect to the

Y axis, in the local YZ plane of mirror 2. This causes the

incident and reflected on-axis rays at mirror 3 to subtend

an angle of 13 degrees. The output of the system is a

collimated rectangular beam with a Y dimension of 12.00002

cm and an X dimension of 12.00023 cm.

Tilt angles and decenters are shown in Figure 4-2. The

beam path initially follows the Z axis until it reaches

_IL mirror 1. Mirror 1 is tilted 1.5 degrees counterclockwise

with respect to the original Y axis. The new Z axis, labeled
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V, is defined normal to the tilted mirror 1. The Z' axis

subtends an angle of 1.5 degrees with the Z axis and also

with the incident beam. This causes the beam to strike

mirror 1 with an angle of incidence of 1.5 degrees. By

the Law of Reflection, the angle subtended by the incident

and reflected beams at mirror 1 is 3 degrees. From mirror 1

the beam travels 546.9 cm to mirror 2. Mirror 2 is dis-

placed from the Z' axis by 14.316 cm (546.9 sin 1.5) in

order for the beam to strike its center. If mirror 2 were

left perpendicular to the Z' axis (tilt = 0) the beam would

strike mirror 2 at an incident angle of 1.5 degrees. Mirror

2, however, is rotated 3 degrees clockwise making the in-

cident angle 4.5 degrees. By the Law of Reflection, the

angle subtended by the incident and reflected beams at

mirror 2 is 9 degrees. The new Z" is axis defined by the

normal to mirror 2. From mirror 2 the beam travels 125 cm

to mirror 3. Mirror 3 is displaced from the Z" axis by

9.807 cm (125 sin 4.5) in order for the beam to strike

its center. If mirror 3 were left untilted, the beam

would strike it at an incidence angle of 4.5 degrees. Mirror

3 is, however, rotated 2 degrees clockwise causing the inci-

dence angle to increase to 6.5 degrees. Therefore, by the

Law of Reflection, the incident and reflected beams at

mirror 3 subtend an angle of 13 degrees.

Angular Aberrations. An alternative to using linear

measure to describe amounts of aberration is to describe

them using angular measure. If in a focal optical system
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no aberrations were present, all rays would pass through the

paraxial focus. Aberrations within the system can then

be thought of as causing the rays beyond the strictly paraxial

zone to take an undesirable or wrong direction. The angular

difference between the real direction and the ideal

direction is a legitimate measure of aberration (Ref 16:116).

This measure of aberrations is particularly well suited

for afocal systems where angular deviations are measured

with respect to the ideal, perfectly collimated output. This

is the means by which the FALCON program calculates Seidel

aberrations for afocal systems. The sign convention

dictates that positive angular aberrations result from

clockwise angular displacements.

Design Analysis. The final design consists of two

diverging cylindrical mirrors surrounding a single con-

verging spherical mirror. Without the use of conic and

higher order aspherics, a Strehl ratio of 0.999 was achieved.

Using the method of Buchdahl (Ref 10), third and fifth order

aberrations were calculated. The final design resulted in

all third and fifth order aberrations being less than 0.9 mrad.

These results lend themselves less well to interpretation

than the wavefront aberrations calculated using the FALCON's

ZPOLY LIST command. By fitting a set of Zernike Polynomials

to the optical path difference data in the ray matrix file

(generated by the PUPIL command), the wavefront aberration

is calculated. The output of the ZPOLY LIST command

is summarized in Figure 4-3. The first table of Figure 4-3
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gives the root mean square (rms) fit, in wavelengths, for

different orders of Zernike polynomials. As is shown by the

data, the rms wavefront fit using up to sixth order polynomials

does not deviate by more than 0.001 wavelengths. The

next table gives fourth order wavefront aberrations with none

exceeding one quarter of a wavelength. The last table in-

dicates the contribution of different orders to the total

spherical aberration. The column labeled "ZERNIKE" lists

the radial Zernike polynomials used. The column labeled

"ASPHERIC" lists the corresponding coefficients for the

following expansion:

z = c + c r2 + c r4 + cr + (4-1)0 2 4 6(41

These coefficients are obtained by uncoupling different

powers of r in the Zernike radial polynomial expansion. The

Strehl ratio is calculated to be .999 indicating a reduction

in intensity at the diffraction focus of 0.1 percent. This

is substantially under the 20 percent criterion discussed

in Appendix III.

Figure 4-4 shows a contour plot of the output wave-

front with a contour interval of 0.04 wavelengths (0.42

microns at X = 10.6 microns). Figure 4-5 gives an isometric

plot of the same wavefront. Figures 4-4 and 4-5 both show

a very nearly spherical wavefront with no major irregular-

ities. Although quantitatively these plots are not terribly

useful, as a qualitative means they are very useful in

readily detecting irregularities in the transmitted wavefront.

74



FIELD ANGLE 0.0 DEG

BILATERAL SYMMETRY INVOKED

TERMS RMS

0 .030

TILT 1 .030

FOCUS 2 .005

4TH ORDER 5 .003

6TH ORDER 9 .000

8TH ORDER 14 .000

10TH ORDER 21 NEGATIVE VARIANCE

STREHL RATIO .999 AT DIFFRACTION FOCUS

FOURTH ORDER ABERRATIONS

MAGNITUDE ANGLE DESIGNATION

- .016 90.0 TILT

.243 DEFOCUS

.019 0.0 ASTIGMATISM

.014 90.0 COMA

.002 SPHERICAL ABERRATION

RADIAL COEFFICIENTS

ORDER ZERNIKE ASPHERIC RAYS

2 .121 .242 .000484

4 .000 .000 .000001

6 -. 000 .000 .000000

8 .000 -. 000 .000000

10 -. 000 .000 .000000

12 -. 000 -. 000 -. 000000

Figure 4-3. ZPOLY LIST Output Sunmmary
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The spot diagram of Figure 4-6 demonstrates the square

dimensions of the beam and the uniformity of the intensity

Contour

Interval

Figure 4-4. Wavefront Contour Plot
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distribution. This diagram is taken in the focal plane

(designated 200 cm to the left of mirror 3) by tracing a

uniform grid of parallel rays on the surface of mirror 1,

through the system. For the diagram shown in Figure 4-6,

approximately 1000 rays are shown. The output shows the

uniformity of the intensity distribution across the output

beam.

Figure 4-5. Isometric Wavefront Plot

The design presented here meets the functional require-

ments of the beam expander described by AFWL. The Strehl

ratio of 0.999 exceeds the accepted diffraction limited

criterion of 0.80 for an operating wavelength of 10.6

microns. The final design was chosen as the best of those

considered on the basis of its wavefront aberration co-

efficients as generated by the ZPOLY LIST command and on

the Strehl ratio calculated using the same command. In
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2 cm

Figure 4-6. Spot Diagram

cases where there was no clear reason to choose one solution

over another on these bases, the dimensional data of Table

* 4-3 were taken into account. Those solutions whose dimensions

were closest to 12 cm by 12 cm and with divergence angles
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nearest to zero were chosen above others.

From a comparison of the corresponding solutions from

Tables 4-1 and 4-3 an evolution of progressively better

solutions (lower aberrations, higher Strehl ratios) is

shown to correspond with larger distances and with smaller

curvatures. In general less abruptly curved mirrors imply

smaller aberrations and this is shown here. In tables 4-1,

4-2, and 4-3, the solution numbered 17 is the solution chosen

as the final design. This solution was chosen above all

others examined because it offered both a Strehl ratio of

.999 and low wavefront aberrations. Of those possible

solutions examined with a Strehl ratio of .999, this particu-

lar solution yielded output dimensions closest to 12 cm by

12 cm (actually 12.000002 by 12.000230) with the smallest

divergence angles (less than 1 microradian).

For systems with 30 percent less separation between

mirrors, and radii of curvature 30 percent shorter than the

final design solution described above, Strehl ratios of

greater than 0.990 can be achieved with output beam

divergence angles less than 5 microradians (Solution 6,

Tables 4-1, 4-2, and 4-3).
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VI COCUSO
The objectives of this these were many-fold. The first

and most important purpose was to learn about computer aided

geometrical optics design to the point where a design task

could be undertaken and accomplished. This included the

analysis of a Cooke triplet as an exercise of the FALCON

code. It also included the design of a beam expander, the

requirement for which arose from a need at the AFWL. In

addition to accomplishing these tasks, some of the theory

upon which the FALCON code is built was also examined. Also

considered were the ideas of optical tolerance and aberration

control.

Triplet Analysis

A Cooke triplet was analyzed as a demonstration of the

FALCON code. The summary of the results of that analysis

is presented here.

For the o:iginal triplet, as published, the Strehl ratio

was calculated to be 0.235. The dominant third order

aberration was spherical aberration at -2.203 wavelengths

A=0.58756 microns). An adjustment was made to the triplet

in an attempt to reduce the spherical aberration by slightly

adjusting the focus. This was accomplished by reducing the

distance between the second and third elements from 1.13691

cm to 1.07600 cm. After this adjustment was made, the focal

plane was moved from 14.05015 cm to 14.15522 cm to the right

of surface 6. This reduced the defocus from -9.999 wave-
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lengths to 0.000 wavelengths. After reducing the distance

between elements two and three but before moving the focal

plane, the spherical aberration was calculated to be 0.067

wavelengths. The Strehl ratio was 0.648. After moving

the focal plane, defocus was reduced to 0.000, however a

small increase in spherical aberration from 0.067 to 0.078

was observed. The Strehl ratio remained at 0.648. In all

cases, the object was positioned 25 cm to the left of the

first element.

The spot diagram showed a central bright spot for the

original triplet with a diameter of 0.014 cm which, after

adjustment, was reduced to 0.0020 cm. As expected, the

spot size should reduce with a reduction in aberrations.

When the adjusted system was decentered -1.25 cm

(-Y direction) off the optical axis to examine the effects

of an off-axis object point, the dominant third order

aberration became coma at 1.768 wavelengths. The object

position remained at 25 cm as before. The spot diagram

showed a comet-like pattern with an intense head and a

more diffuse tail region which is characteristic of the

aberration coma. The diameter of the central bright spot

increased from approximately 0.0020 cm for the centered

system, to 0.0096 cm for the decentered system. For more

highly aberrated system configurations, the size of the focal

spot is expected to be larger, as observed.

Off-Axis Beam Expander

The function of the off-axis beam expander considered
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in this effort is to receive, as its input, a 1.5 cm by

15 cm rectangular laser beam, and produce as its output,

a 12 cm by 12 cm rectangular beam. The design solution

proposed by the AFWL utilized two cylindrical mirrors and

a single spherical mirror. Upon analysis it was found

that solutions employing two diverging cylindrical mirrors

produced categorically lower aberrations than solutions

employing one diverging cylindrical mirror and 1 converging

cylindrical mirror. As a result, the former approach was

chosen over the latter. The design solution chosen was

the best solution examined based on Strehl ratios and

output beam parameters. The Strehl ratio was calculated

to be 0.999 with the dominant aberration being astigmatism

at 0.019 wavelengths (X =10.6 microns). The output beam

divergence is less than one microradian in both X and Y

dimensions. The dimensions of the output beam are 12.000020

cm in the Y direction by 12.00023 cm in the X direction.

Wavefront plots show an absence of irregularities and the

spot diagram shows an even distribution of intensities

across the beam.

Recommendations

The avenues open in the field of geometrical optics

design for further investigation are too numerous to

discuss here; however, several issues of interest surfaced

through the course of this effort. When thinking of computer

aided optical design, the question of division of labor arises.
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How much of the design can be done by the computer and how

much must be done by the designer? Of particular interest

is the use of optimization techniques to produce a best

possible design. A survey of currently used optimization

techniques and an application to a simple design could be

performed (Ref 24:66). Furthermore, it would prove in-

sightful to examine conditions under which several opti-

mization techniques fail to perform adequately (Ref 25:75).

Another possibility for a later effort, in order to

gain a working knowledge of optical design, might involve

studying a relatively simple optical system (e.g. a

triplet). A detailed analysis of the effects of several

parametric adjustments would provide for an interesting

study with the added possibility of gaining insight into

design cause and effect. Such an effect would involve

studying the effects of changes in surface curvature and

refractive index as well as inter-element distance on the

magnitudes of third order aberrations. The inclusion of

apertures and their positioning in the system as it effects

system performance should also be considered.
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Appendix I

Glossary

Axial Ray -That ray which begins at the on-axis object

point and passes through the optical system. For

focal systems, the image is located where the axial

ray crosses the optical axis.

Chief Ray - That ray starting at an off-axis object point,

which passes through the center of the aperture stop.

Diffraction Focus - When aberrations are present in a focal

system the diffraction focus is the point of maximum

intensity in image space.

Gaussian Focus - In the absence of aberrations in a focal

system, the point of maximum intensity in image space

is the Gaussian focus.

Gaussian Reference Sphere - In the absence of aberrations in

a focal system, the imaginary sphere whose center is

located at the image of an object point in the Gaussian

focal plane. The Gaussian Reference Sphere passes

through the point of intersection of the exit pupil

plane with the optical axis.

Sagittal Plane - The plane which contains the chief ray and

5 is perpendicular to the tangential plane throughout the

optical system.

Tangential Plane - The plane containing the off-axis object

point and the optical axis; throughout the optical system,

the chief ray lies in the Tangential plane.

86



Appendix II

Running FALCON

Running the FALCON code interactively is a simple

matter requiring a few preparatory steps. These steps are

described below to expedite the process for users that may

follow.

The FALCON code is written for use on CDC Cyber computers

with a Tektronix graphics terminal. The Tektronix 4025

terminal requires that the following commands be entered

in order to display the graphics generated by the FALCON

code:

:WOR 33H

:GRA 1,35

:SHRINK

Large format tektronix terminals do not require these

terminal commands. The colon preceeding the verbal portion

of the command is the terminal control character and may

vary from one terminal to the next.

Once logged in on the Cyber computer, the following

sequence should be entered upon receiving the COMMAND-

prompt from the Cyber:

ATTACH,LFN1, FALCON,ID=

ATTACH,LFN2,OPTLIB,ID=

CONNECT,INPUT,OUTPUT

LFNI

The quantities LFNI and LFN2 are local file names of t.e

operators own choosing. The ID= may be omitted if
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the operator has copies of the FALCON and OPTLIB codes in

files under the same ID number as that used to LOGIN.

This sequence should start the FALCON program. In

order to initiate the graphics mode within FALCON, the

command SYSTEM TEK ON must be entered.
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Appendix III

DIFFRACTION THEORY OF ABERRATIONS

Contained in this appendix is a brief discussion

of the diffraction theory of aberrations. To this end,

Zernike polynomials, aberration balancing, and aberration

tolerances are all discussed. In doing geometrical optics

designs, an understanding of the diffraction effects,

although not specifically considered, is essential to the

understanding of aberration balancing and tolerances. In

addition, the FALCON program uses Zernike polynomials to

calculate wavefront aberrations, the understanding of which

is the cornerstone in balancing aberrations.

For an ideal optical system without aberration, each

* object point has a distinct image point in the Gaussian

* image plane. If the effects of diffraction are taken into

account, the image appears as a complex diffraction figure,

the form of which depends on the shape of the exit pupil.

The point spread function for a clear circular aperture is

the familiar Airy pattern, the intensity distribution for

which is given by

1(r) W 2 1 (v) 2)/v 2(3-1)

where

v =(2ffarn)/XR

In this equation r is the radial distance from the center of

* the pattern, R is the radius of the reference sphere, a is

the radius of the exit pupil, \ is the wavelength of light,

89



n is the refractive index, and J is a Bessel function

of first order (Ref 8:34). The equation is normalized

such that the intensity at the center of the pattern is

unity and thus, the quantity I(r) is dimensionless. For

a focal system, if the effects of diffraction are ignored

for the present the equation for a converging spherical

wavefront can be written as

= c EXP[-ik(x 2 +y2)/2R] (3-2)

where xe, Ye are the coordinates in the exit pupil plane,

R is the radius of curvature of the converging wavefront

in the exit pupil, k=2r/A, and E is the amplitude of the

electric field in the exit pupil (assuming uniform

illumination).

If the effects of aberration are taken into account, in

general, the wavefront in the exit pupil can be written as

Cab = L(xe'Yey)EXP[ik)(x eYe)] (3-3)

The parameter 4, is the aberration function and it completely

describes the aberrations produced by the optical system.

For the perfect optical system which introduces no aberrations,

the parameter t)= 0 (Ref 10:5).

The Strehl ratio is a parameter commonly used as a

measure of the quality of an optical system. In the absence

of aberrations the intensity is a maximum at the Gaussian

image point. When aberrations are present this will, in

general, no longer be the case and the point of maximum

intensity is called the diffraction focus. In general
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there may be more than one diffraction focus but if

aberrations are sufficiently small, the diffraction focus

is unique. The Strehl ratio is the ratio of the intensity

at the diffraction focus in an aberrated system to the

intensity at the Gaussian focus in an unaberrated system

(Ref 4:461). It can be shown that for small aberrations

the Strehl ratio, i(P), can be approximated by

i(P) = 1-k2 ((D -2 
2 ) (Ref 4:464) (3-4)

In this equation T2 is the square of the average wavefront

deviation and 2 is the average of the square of the wave-

front deviation. The quantity in parentheses is the mean

square wavefront deviation ( 2).
rm s

The Strehl ratio approximation indicates that the

fractional intensity at the Gaussian focus, i(P), is

reduced from its optimum value of 1 by the quantity k2 times

the mean square value of the wavefront aberration, where k

is, as usual defined as 27/A. For an optical system with a

Strehl ratio of unity, no greater peak intensity can be

obtained by adjusting the components nor specifications

within the optical system. This approximation is not

meaningful for small values of the Strehl ratio (i<.l)

because for those cases the assumptions used to derive the

equation are not valid.

Zernike Polynomials. The function ¢ is used to

describe the deviation of a given wavefront from a

perfectly spherical one. For the ideal case where there

is no aberration, 4. =0 and the intensity distribution from
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a circular aperture is decribed by equation (3-1). For

the more difficult cases where D is not zero, the problem

arises to determine the impact of a non-zero aberration

function on the intensity. For the case of a circular

exit pupil, Zernike polynomials can be used.

Zernike polynomials are a set of functions orthogonal

over the unit circle. By using these functions, any smooth

aberration, p , can be uniquely represented by series sums

of these functions. Zernike polynomials are the logical

choice for this application because specific terms in the

Zernike polynomial expansion can be related to the con-

ventional Seidel aberrations.

The aberration function depends upon position within

the exit pupil and is therefore a function of two variables.

(Y(xy) =n l V (Xeye) (3-5)e e nl n e e

The term V is the Zernike polynomial. The Zernike polynomial

can be written in polar coordinates as

V (x,y) = Rn1 (P)e il (3-6)

where x=psino and y=pcose . The following restrictions

apply to the indices of V and R:

n,l integers

n //

n-/i/= an even integer (Ref 4:464).
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The polynomials R (P) are called the Zernike circle or
n

radial polynomials.

If 4 ( p,O ) is expanded in Zernike circle polynomials

using equations (3-5) and (3-6) with the given restrictions

on the indices of the circle polynomials

00 0¢1 f, 0 = 01R (P

+ Ao1 R (p )e

+ A0_I R0- (P )e-
2 2i0

+ A2 2R2 (P)e

A22R2- ( )e- 2 0

0+ A R p) (3-7)
20 2

A table of expanded Zernike circle polynomials is in-

cluded as Appendix IV.

K2 2i(P) = 1- 2  E Anm 2/(n+l) (3-8)

This states explicitly that the Strehl ratio can be

calculated from the coefficients of the Zernike circle

polynomial expansion. This, once again, is contingent

upon the small aberration assumption made earlier.

Aberration Balancing. Often one objective in design-

ing a lens system is to maximize the intensity in the focal

plane. This is done by introducing carefully controlled

aberrations to reduce the effects of other unwanted aberrations.

A trade-off, however, does exist between adding some

aberrations and reducing others. The use of Zernike cirle
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polynomials helps simplify this balancing process.

As an example, consider the case of spherical

aberration, characterized by rays converging in several

planes other than the focal plane. The distance between

the Gaussian focal plane and the plane in which a given ray

focuses is dependent upon the zone in which the ray enters

the system. For zones farther away from the optical axis,

a ray's length is shorter than for zones closer to the

optical axis. Spherical aberration can be minimized by

inserting an aperture to limit the zones to the paraxial

region but in some cases this may not be practical. Also

by shifting the position of the focal plane to a more central

position (e.q. the circle of least confusion), the spherical

aberration can be reduced. Also by the addition of con-

trolled amounts of other aberrations, the unwanted spherical

aberration can be reduced.

As an example, assume a given optical system has a

known amount of sixth order spherical aberration;

06(D=a6 o

The Zernike circle polynomial representing the aberration
0

must necessarily consist of the R6 polynomial to include
6

the p without a cosine dependence. The remaining terms

must be cancelled by the inclusion of other appropriate

Zernike circle polynomials of lower order (Ref 4:468).

With this in mind
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6 _ 0 4  2_A) 60 (20P30 +12P -1)

4 2+A 40 (6P_ -6P +1)

+A 20 (2P -_1) + A 0 0  (3-9)

Th cndtin P a 6 requires that the coefficient of the

first polynomial (A 60) equal a 6/20. This in turn adjusts

the coefficients of the lower order terms in the first

ra polynomial as follows:

-3a 6/2 p4 + 3a 6/5 2 + a 6/20

The second polynomial is included to nullify the p 4term

0in the R6 polynomial. In this case

40 4

requirinig that a /4.
40 a6

This, in turn, adjusts the remaining terms in theR40

polynomial as follows:

-3 / p2 + a /4

This term is added to the surviving terms of the R 
0

polynomial to yield

-9a 6/10 + a 6/S.

The third polynomial is included to nullify the P term

-in the R 4 0polynomial which requires

9a 6/20 -A20*
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This leaves as the surviving term

-a6 /4

requiring A00 = a6 /4 to nullify it. Using equation (3-8),

the Strehl ratio is given by

k2
i(P) = 1-2 [a6 /16 + 1/3 81a 6 /400 + 1/5 a6 /161.

Thus the Strehl ratio can be calculated at a given wave-

length for a known value of a6 (Ref 10:35).

By eliminating certain terms in equation (3-9) the

value of the Strehl ratio can be improved. This is done

by introducing other aberrations, for example A40 of

-a 6/4 and A20 of -9a 6/20 will eliminate the corresponding

terms in equation (3-8) with the end result being an

increase in i(P) (Ref 10:36).

Tolerance Conditions for Primary Aberrations. In

optical design the question of how much of each type of

aberration can be tolerated without seriously degrading the

image naturally arises. For the case of an optical system

with a circular aperture imaging a bright point object,

diffracted image will be the familiar Airy pattern. The

presence of aberrations causes a reduction in intensity of

the central maximum, the halfwidth of the maximum remains

unchanged, and more light appears in the outer rings (Ref

12:206).

_ It was first found by Rayleigh in 1879 that when a

system suffers from primary spherical aberration of such
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an amount that the wavefront in the exit pupil departs from

the spherical reference wavefront by less than one quarter

of a wavelength, the reduction in intensity at the

diffraction focus is less than 20 percent (Ref 4:468).

In the absence of aberrations, the intensity is a maximum

at the Gaussian focus. When aberrations are present, the

point of maximum intensity is the diffraction focus

(Ref 4:461). Later it was found that if this quarter wave-

length limit were adhered to, the image is also not

seriously degraded in the presence of other aberrations.

This result became known as the Rayleigh quarter wave

limit. This, however, is a coarse guideline and must

be used in conjunction with a knowledge of the application

-- to which the system will be put. When the condition

max = /4 is applied to aberrations of different types,

a variety of values for the intensity at the diffraction

focus are obtained.

It is more appropriate to consider each individual

aberration and to determine a tolerance for each one to

yield a given intensity level at the diffraction focus.

Criteria of this type were considered by Marechal in 1947

(Ref 4:469). As was stated earlier, when aberrations are

sufficiently small

i(P) = 1)k2( _ -2)

The quantity in parentheses is the mean square deviation of

the aberrated wavefront from a spherical reference
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wavefront (2 rms). If the intensity of 80 percent of

the Gaussian intensity is used as the criterion,

i(P) > 0.8

Substituting a Strehl ratio of 0.8 into the above

equation,

2
D rms > X/14.0496

This is equivalent to saying that the root mean square

departure of the wavefront from the reference sphere

centered on the diffraction focus shall not exceed the

value or A/14.

This leaves two remaining items to be considered.

First, the location of the diffraction focus is still in

question, and secondly, tolerance conditions for spherical

aberration, coma, and astigmatism must be considered. Since

field curvature and distortion act to shift the focus, and

not strictly to degrade the quality of the image, tolerances

for those cases will not be considered.

In terms of the Zernike circle polynomials, each

primary aberration can be represented in the form

= £nmAlnmRnm  ) cos me (3-10)

where m = 1/1.414 for n=0, m#0

= 1 otherwise.

Zernike circle polynomials are shown in Figure 3-1 where
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the appropriate polynomial is expanded (Ref 4-470).

Aberration 1 n m Representation

Spherical 0 4 0 1/1.414 A0 4 0 (6p4 -6 2 +1)

Coma0 3 1 A031(3p 3-2p )cos 0
2 2

Astigmatism 0 2 2 A022 p (2cos2 0 - 1)

Field Curv. 1 2 0 1/1.414 A1 20 (2p 1)

Distortion 1 1 1 All pcos 0

Figure 3-1. Zernike Representation of Primary Aberrations

It is appropriate now to include the displacement

theorem as stated by Born and Wolf:

"The addition to an aberration function of a

term 1, 2 + Kpsin 0+ Lpcoso + M where

11, K, L, and M are constants of order Xresults

in no change in the three dimensional intensity

distribution near focus, apart from a displace-

ment of distribution as a whole in accordance

with the equations

z' = z + (2R/a)2H; x' - x + (R/a)K; y' = y + (R/a)L'

These three equations give the location of the diffraction

focus with respect to the Gaussian focus.

In Figure 3-2 the primary aberrations are given in

terms of the wavefront aberration, the coefficients being

99



primed to avoid confusion with the Zernike circle polynomial

coefficients (Ref 4:470).

Aberration 1 n m Representation
4

Spherical 0 4 0 A'040 p

Coma 0 3 1 A'0 3 1 P 3Cos

2 2
Astigmatism 0 2 2 A'0 2 2 P cos 2

Field Curv. 1 2 0 At120 p

Distortion 1 1 1 A' 11 pcos a

Figure 3-2. Wavefront Aberrations

If the shift in focus is given by

6/1.414 A040 = A040 = H (3-11)

K = L = 0.

Substituting these values into the equations of the

displacement theorem determines the diffraction focus

with respect to the Gaussian focus.

The problem of determining the tolerance for a given

aberration remains. Using equation (3-8) and a Strehl

ratio of 0.8 as a lower limit, the following equation

results:

1-k 2/2 A 2nm/(n+l)> 0.8

Which can be reduced to Alnm = X n+l/9.935 yielding a
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value of .225 A for A040 . Using equation (4-14) the

Zernike polynomial coefficient is converted to the

wavefront aberration coefficient value A' = .955 A040

This states that the maximum deviation of the wavefront

from the Gaussian reference sphere cannot exceed .955 X

to maintain a Strehl ratio of 0.8. Coma and astigmatism

tolerances are determined similarly.
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Appendix IV

Zernike Circle Polynomials

Zernike Circle Polynomials R m( ) for n,m 8

Rm

m n n

00 1

0 2 2p2-i

0 4 6 P4-6P 2+1

0 6 20P 6-30P 4+12P 2-1

0 8 70 f8-140P 6+90P 4-20P 2+1

11 p

1 3 3 p3-2 P

1 5 10 1-2 03p

7_ 5 31 7 35 -60 +30 03-4 P

22 2 p

2 4 4 2

2 6 15-20 P4 +6

2 8 56 f8-105 -60 p4_10 p2

3 3 p3

3 5 35_ 4 P3

3 7 21 P7-30 p5+10p3

4 4 p 4

4 6 6p 6_ 5 p4
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Appendix IV (continued)

Rm
m n n

4 8 28p -42p 6+15P4

55 p5

7 _ 5

57 7p7-6p5

6
6 6 p6

8 6
6 8 8p -7p

77 p 7

88 p
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Appendix V

Basic Program LI .t j

10 REM ** PROGRAM TO CALCULATE PARAMETERS FOR BEAM **

20 REM *4 EXPANDER *

30 REM * ITERATIVELY SPECIFY F3 *

40 LPRINT " CV1 CV2 CV3 D2 D3
50 LPRINTtLPRINT
60 DEFDBL A-H
70 DEFDBL J-Z
80 FOR I=100TO 500 STEP 10
90 F3 I
100 F2 F3/-.8
110 D3 .2*F2
120 Ft = F2/8
130 D2 = F1-F2

140 CV1 = 1/(2*F1)
150 CV2 = 1/(2*F2)
160 CV3 = 1/(2*F3)
170 REM ** CALCULATE DECENTER PARAMETERS **

150 DEC2 = D2*.0348934967
190 DEC3 = D3*.0871557427
200 LPRINT USING " #. ## ...... ;CVICV2,CV3,D2,D3,DEC2,DEC3
210 NEXT I
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